1 |
Unit Adler;
|
2 |
|
3 |
{
|
4 |
adler32.c -- compute the Adler-32 checksum of a data stream
|
5 |
Copyright (C) 1995-1998 Mark Adler
|
6 |
|
7 |
Pascal tranlastion
|
8 |
Copyright (C) 1998 by Jacques Nomssi Nzali
|
9 |
For conditions of distribution and use, see copyright notice in readme.paszlib
|
10 |
}
|
11 |
|
12 |
interface
|
13 |
|
14 |
{$I zconf.inc}
|
15 |
|
16 |
uses
|
17 |
zutil;
|
18 |
|
19 |
function adler32(adler : uLong; buf : pBytef; len : uInt) : uLong;
|
20 |
|
21 |
{ Update a running Adler-32 checksum with the bytes buf[0..len-1] and
|
22 |
return the updated checksum. If buf is NIL, this function returns
|
23 |
the required initial value for the checksum.
|
24 |
An Adler-32 checksum is almost as reliable as a CRC32 but can be computed
|
25 |
much faster. Usage example:
|
26 |
|
27 |
var
|
28 |
adler : uLong;
|
29 |
begin
|
30 |
adler := adler32(0, Z_NULL, 0);
|
31 |
|
32 |
while (read_buffer(buffer, length) <> EOF) do
|
33 |
adler := adler32(adler, buffer, length);
|
34 |
|
35 |
if (adler <> original_adler) then
|
36 |
error();
|
37 |
end;
|
38 |
}
|
39 |
|
40 |
implementation
|
41 |
|
42 |
const
|
43 |
BASE = uLong(65521); { largest prime smaller than 65536 }
|
44 |
{NMAX = 5552; original code with unsigned 32 bit integer }
|
45 |
{ NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 }
|
46 |
NMAX = 3854; { code with signed 32 bit integer }
|
47 |
{ NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^31-1 }
|
48 |
{ The penalty is the time loss in the extra MOD-calls. }
|
49 |
|
50 |
|
51 |
{ ========================================================================= }
|
52 |
|
53 |
function adler32(adler : uLong; buf : pBytef; len : uInt) : uLong;
|
54 |
var
|
55 |
s1, s2 : uLong;
|
56 |
k : int;
|
57 |
begin
|
58 |
s1 := adler and $ffff;
|
59 |
s2 := (adler shr 16) and $ffff;
|
60 |
|
61 |
if not Assigned(buf) then
|
62 |
begin
|
63 |
adler32 := uLong(1);
|
64 |
exit;
|
65 |
end;
|
66 |
|
67 |
while (len > 0) do
|
68 |
begin
|
69 |
if len < NMAX then
|
70 |
k := len
|
71 |
else
|
72 |
k := NMAX;
|
73 |
Dec(len, k);
|
74 |
{
|
75 |
while (k >= 16) do
|
76 |
begin
|
77 |
DO16(buf);
|
78 |
Inc(buf, 16);
|
79 |
Dec(k, 16);
|
80 |
end;
|
81 |
if (k <> 0) then
|
82 |
repeat
|
83 |
Inc(s1, buf^);
|
84 |
Inc(puf);
|
85 |
Inc(s2, s1);
|
86 |
Dec(k);
|
87 |
until (k = 0);
|
88 |
}
|
89 |
while (k > 0) do
|
90 |
begin
|
91 |
Inc(s1, buf^);
|
92 |
Inc(s2, s1);
|
93 |
Inc(buf);
|
94 |
Dec(k);
|
95 |
end;
|
96 |
s1 := s1 mod BASE;
|
97 |
s2 := s2 mod BASE;
|
98 |
end;
|
99 |
adler32 := (s2 shl 16) or s1;
|
100 |
end;
|
101 |
|
102 |
{
|
103 |
#define DO1(buf,i)
|
104 |
begin
|
105 |
Inc(s1, buf[i]);
|
106 |
Inc(s2, s1);
|
107 |
end;
|
108 |
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
|
109 |
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
|
110 |
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
|
111 |
#define DO16(buf) DO8(buf,0); DO8(buf,8);
|
112 |
}
|
113 |
end.
|
114 |
|